

Two-way physics-biogeochemistr coupling constrained by ocean¹¹ colour data assimilation

H

Crown Copyright 2022, Met Office

David Ford and Susan Kay

SynObs Kickoff, 16th November 2022

Set Office Background

- Shortwave solar radiation (light) enters the ocean, heating the surface layers.
- Chlorophyll (and sediment and gelbstoff in shelf seas) absorbs and scatters the light so it penetrates less deeply.
- Heating is concentrated nearer the surface, changing the physics.
- Long-established feedback but rarely included in models.

Set Office UK Earth System Model 1 (UKESM1)

Set Office Background

- In UKESM1, NEMO uses "RGB" scheme of Lengaigne et al. (2007)
- Visible light split into:
 - Red (600-700 nm)
 - Green (500-600 nm)
 - Blue (400-500 nm)
- Chlorophyll-dependent attenuation coefficient for each waveband
- Constant chlorophyll of 0.05 mg m⁻³ (clear waters)

• But what if chlorophyll came from a coupled biogeochemical model instead, maybe assimilating chlorophyll from ocean colour?

© Crown Copyright 2022, Met Office

Copernicus Sentinel-3. Credit: ESA/ATG Medialab

Set Office Experiments

- Set of ocean-only runs from 2010-2019
- 1° global NEMO-CICE-MEDUSA (ocean components of UKESM1)
- ERA5 atmospheric forcing

Name	Chlorophyll seen by NEMO	Assimilation	
One-way free	Constant (0.05)	None	Identical
One-way OC DA	Constant (0.05)	Ocean colour	physics
Two-way free	Varying (MEDUSA)	None	
Two-way OC DA	Varying (MEDUSA)	Ocean colour	

• (Also some 18-month 1/4° runs, and some sensitivity experiments where output from *Two-way OC DA* is used to constrain the light field of NEMO and/or MEDUSA while the biology remains unconstrained by assimilation)

Results

www.metoffice.gov.uk	© Crown Copyright 2022, Met Office

Met Office 2010-2019 mean surface chlorophyll

2010-2019 mean temperature at 0m

(b) Two-way free minus One-way free

2010-2019 mean temperature at 100m (b) Two-way free *minus* One-way free

0.3

0.6

0.9

(c) Two-way OC DA minus One-way free

© Crown Copyright 2022, Met Office

12

8

4

0

16

20

(a) One-way free

-0.9 -0.6 -0.3 0

Maximum absolute difference from One-way free Temperature (°C) - 20100101-20191231

2019 mean Heat content

Global Ocean monthly mean temperature (°C)

North Atlantic monthly mean temperature (°C)

Global Ocean monthly mean chlorophyll (mg m⁻³)

2010-2019 mean temperature (°C)

Met Office

© Crown Copyright 2022, Met Office

0.27

1.8

2010-2019 mean temperature at 0m

Relative change in SST due to assimilation compared to change due to coupling

|(Two-way DA – Two-way free) – (Two-way free – One-way free)| |(Two-way free – One-way free)| x 100

Summary

Solution Set Met Office Summary

- Implemented two-way coupling between NEMO and MEDUSA
- Impact of two-way coupling consistent with theory and could be significant, e.g. for ocean heat content
- Much regional and seasonal variation
- Magnitude of change in SST due to uncertainties in model chlorophyll comparable to change due to coupling
- Use of input chlorophyll climatology a potential compromise

Ocean Modelling Available online 18 February 2022, 101976

In Press, Journal Pre-proof ၇

The impact of ocean biogeochemistry on physics and its consequences for modelling shelf seas

Jozef Skákala ^{a, b} ♀ ⊠, Jorn Bruggeman ^a, David Ford ^c, Sarah Wakelin ^d, Anıl Akpınar ^d, Tom Hull ^{e, f}, Jan Kaiser ^f, Benjamin R. Loveday ^g, Enda O'Dea ^c, Charlotte A.J. Williams ^d, Stefano Ciavatta ^{a, b}

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.ocemod.2022.101976

Get rights and content

Questions?